Articles:
- Scattering Expansion for Localization in One Dimension, A. B. Culver, P. Sathe, R. Roy, arXiv:2210.07999 (2022)
- Fractional Chern insulators with a non-Landau level continuum limit, D. Bauer, S. Talkington, F. Harper, B. Andrews, and R. Roy, Phys. Rev. B 105, 045144 (2022).
- Compactly supported Wannier functions and strictly local projectors, P. Sathe, F. Harper and R. Roy,J. Phys. A Math. Theor. 54, 335302 (2021).
- Topology and Broken Symmetry in Floquet Systems, F. Harper, R. Roy, M. S. Rudner, and S. L. Sondhi, Annu. Rev. Condens. Matter Phys. 11, 345 (2020).
- Majorana braiding in realistic nanowire Y-junctions and tuning forks, F. Harper, A. Pushp, and R. Roy, Phys. Rev. Research 1, 033207 (2019) .
- Finite-wavevector Electromagnetic Response in Lattice Quantum Hall Systems, F. Harper, D. Bauer, T. S. Jackson, and R. Roy, Phys. Rev. B 98, 245303 (2018), Editors’ Suggestion.
- Chiral Flow in One-dimensional Floquet Topological Insulators, X. Liu, F. Harper, and R. Roy, Phys. Rev. B 98, 165116 (2018).
- Interacting Floquet topological phases in three dimensions, D. Reiss, F. Harper, and R. Roy, Phys. Rev. B 98, 045127 (2018).
- Floquet topological phases with symmetry in all dimensions, R. Roy and F. Harper, Phys. Rev. B 95, 195128 (2017), Editors’ Suggestion.
- Floquet Topological Order in Interacting Systems of Bosons and Fermions, F. Harper and R. Roy, Phys. Rev. Lett. 118, 115301 (2016), Editors’ Suggestion.
- Periodic Table for Floquet Topological Insulators, R. Roy and F. Harper, Phys. Rev. B 96, 155118 (2017), Editors’ Suggestion.
- Abelian Floquet symmetry-protected topological phases in one dimension, R. Roy and F. Harper, Phys. Rev. B 94, 125105 (2016).
- Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model, D. Bauer, T. S. Jackson and R. Roy, Phys. Rev. B 93, 235133 (2016).
- Geometric stability of topological lattice phases, T. S. Jackson, G. Mo ̈ller and R. Roy, Nat. Commun. 6, 8629 (2015).
- Perturbative approach to flat Chern bands in the Hofstadter model, F. Harper, S. H. Simon, and R. Roy, Phys. Rev. B 90, 075104 (2014).
- Generalizing Quantum Hall Ferromagnetism to Fractional Chern Bands, A. Kumar, R. Roy, and S. L Sondhi, Phys. Rev. B 90, 245106 (2014).
- Hall conductivity in the normal and superconducting phases of the Rashba system with Zeeman field, S. B. Chung and R. Roy, Phys. Rev. B 90, 224510 (2014).
- Fractional quantum Hall physics in topological flat bands, S. A. Parameswaran, R. Roy and S. L. Sondhi, C. R. Physique 14, 816 (2013).
- Space group symmetries and low lying excitations of many-body systems at integer fillings, R. Roy, arXiv: 1212.2944 (2012).
- Band geometry of fractional topological insulators, R. Roy, Phys. Rev. B 90, 075104 (2014).
- Fractional Chern insulators and the W∞ algebra, S. A. Parameswaran, R. Roy and S. L. Sondhi, Phys. Rev. B 85, 241308 (2012).
- Fractional quantum Hall effect without Landau levels, R. Roy and S. L. Sondhi, Physics 4, 46 (2011).
- Topological pumps and adiabatic cycles, R. Roy, arXiv:1104.1979.
- Topological Majorana and Dirac zero modes in superconducting vortex cores, R. Roy, arXiv:1001.2571, Phys. Rev. Lett. 105, 186401 (2010).
- Characterization of 3d topological insulators by 2d invariants, (Invited paper), R. Roy, arXiv:1004.3507, New J. Phys. 12, 065009 (2010).
- Topological phases and the quantum spin Hall effect in three dimensions, R. Roy, cond-mat/0607531, Phys. Rev. B 79, 195322 (2009).
- Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance, R. Roy, cond-mat/0604211, Phys. Rev. B 79, 195321 (2009).
- Collective modes and electromagnetic response of a chiral superconductor, R. Roy, C. Kallin, arXiv:0802.3693, Phys. Rev. B 77, 174513 (2008).
- Topological superfluids with time reversal symmetry, R. Roy,arXiv:0803.2868.
- Spin-Hall effect in triplet chiral superconductors and graphene, K. Sengupta, R. Roy and M. Maiti, cond-mat/0604217, Phys. Rev. B 74, 094505 (2006).
- Topological invariants of time reversal invariant superconductors, R. Roy, cond-mat/0608064.
- Integer quantum Hall effect on a square lattice with zero net magnetic field, R. Roy, cond-mat/0603271.
- Edge modes, edge currents, and gauge invariance in px + ipy superfluids and superconductors, M. Stone and R. Roy, cond-mat/0308034, Phys. Rev. B. 69, 184511 (2004).