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We present a perturbative approach to a broad class of disordered systems in one spatial di-
mension. Considering a long chain of identically disordered scatterers, we expand in the reflection
strength of any individual scatterer. This expansion accesses the full range of phase disorder from
weak to strong. As an example application, we show analytically that in a discrete-time quan-
tum walk, the localization length can depend non-monotonically on the strength of phase disorder
(whereas expanding in weak disorder yields monotonic decrease). Returning to the general case,
we obtain to all orders in the expansion a particular non-separable form for the joint probability
distribution of the log-transmission and reflection phase. Furthermore, we show that for weak local
reflection strength, a version of the scaling theory of localization holds: the joint distribution is
determined by just three parameters.

Introduction.—Localization of waves by disorder oc-
curs in a broad range of settings, including electron trans-
port (in solids and mesoscopic devices), classical optics,
acoustics, and Bose-Einstein condensates [1]. Progress in
the general theory of localization, independent of model
details or of physical realization, can then have similarly
broad implications. Another setting for localization, of
recent interest for its potential for quantum computing
[2, 3], is the discrete-time quantum walk (DTQW), which
is a quantum version of the classical random walk (see [4]
for a recent review). Localization has been demonstrated
in DTQWs both experimentally and theoretically (e.g.,
[5–11]), and it could impact quantum computing propos-
als even in the idealized limit of no dechoerence [12, 13].

Let us recall some general properties of disordered sys-
tems in one spatial dimension, in which case localiza-
tion can be characterized by the suppression of scatter-
ing through a disordered region. The typical transmis-
sion coefficient T of a long region of length L decays
exponentially: Ttypical ∼ e−2L/Lloc , which defines the lo-
calization length Lloc. In the transfer matrix approach,
rigorous theorems for random matrices demonstrate that
the probability distribution PL(− lnT ) over disorder re-
alizations is Gaussian for large L [14]. All dependence
of PL(− lnT ) on L and on disorder thus reduces to two
parameters (the mean and variance); this reduction is
connected to ideas of universality and the renormaliza-
tion group through the scaling theory of localization [15]
(see also, e.g., [16, 17]). A further reduction called single-
parameter scaling (SPS), in which the two parameters re-
duce to one by an equation relating them, was originally
obtained using an assumption of phase uniformity [18],
but has since been shown to hold in certain limits even
without this assumption [19–21].

In this paper, we advance the general theory of local-
ization with a perturbative approach to a general class of
one-dimensional systems, and we apply our approach to
DTQWs. We consider a long chain of single channel scat-
terers that are independently and identically disordered,

and we expand in the magnitude of the reflection ampli-
tude for any individual scatterer [22]. This expansion is
particularly well-suited to study disorder that affects the
phases of the reflection amplitudes but not their mag-
nitudes, for in this case we can access the full range of
disorder from weak to strong. Furthermore, by consid-
ering the expansion to all orders, we extend some of the
general theory for the distribution of − lnT to the joint
distribution of − lnT and of the reflection phase.

We now summarize our results in more detail. Our first
main result is the expansion of the inverse localization
length. We construct this expansion recursively and show
that all orders depend only on local averages (that is,
disorder averages over any single site). We present the
first two non-vanishing orders explicitly, recovering at the
leading order an equivalent formula derived by Schrader
et al. [21]. In the course of our calculation, we also obtain
a recursive expansion of the probability distribution of
the reflection phase, finding that it is generally uniform
only at the zeroth order (again extending results from
[21]).

As an example application of our result, we calculate
the localization length analytically as a function of phase
disorder in a two-component DTQW in one dimension.
We expect our calculation to apply to scattering setups
[23] and beyond, and indeed we verify that our result in-
terpolates between known results for weak and strong dis-
order that were calculated without reference to scattering
[10]. Our expansion strictly applies when the quantum
“coin” is highly biased (see below), but taking the first
two non-vanishing orders yields favorable agreement with
numerics even if the coin is only moderately biased. We
find that the localization length can be non-monotonic
in the disorder strength, i.e., there can be an amount of
phase disorder beyond which further increase makes the
quantum walk less localized (behavior seen numerically
in [10]) [24].

Our second main result concerns the joint probability
distribution PL(− lnT, φ), where φ is the reflection phase
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of the disordered region. We use an ansatz to find that
for large L and to all orders in the scattering expansion,
PL(− lnT, φ) tends to a Gaussian function (of − lnT )
with mean, variance, and overall scale all depending on
φ and all calculable in the scattering expansion in terms
of local averages. We further show that at the leading
order in the local reflection strength (the same regime in
which SPS applies to the distribution of − lnT [21, 25]),
the scaling theory applies; that is, the joint distribution
is determined by three parameters, which we may take
to be the mean of − lnT and the mean and variance of
φ. The latter two reach constant values for large system
size.

In another manuscript [25] , we will present more appli-
cations (including the Anderson model, a quantum par-
ticle scattering on a broad class of periodic-on-average
random potentials, and the “transparent mirror” effect
[26] in classical optics), as well as further details of our
calculations below.

Setup.—We consider a general model of scattering
through a disordered region (Fig. 1). The region con-

FIG. 1. Schematic of our setup.

sists of N sites labelled as n = 1, . . . , N , where each site
n is associated with a unitary S matrix Sn parametrized
as

Sn =

(
tn r′n
rn t′n

)
, (1)

where tn and t′n (rn and r′n) are the local transmission
(reflection) amplitudes. We consider only the single chan-
nel case, i.e., these amplitudes are complex numbers and
not matrices. We take the disorder distribution of the S
matrices to be independently and identically distributed
(i.i.d.) across the N sites; correlation between the entries
of each individual Sn is allowed as long as every site has
the same distribution.

The S matrix for the region is obtained in the usual
way by multiplying transfer matrices and is parametrized
as in (1), with (e.g.) t1...N ≡

√
T1...Ne

iφt1...N and

r′1...N ≡
√
R1...Ne

iφr′
1...N . (We use subscripts to indi-

cate dependence on the disorder parameters of the cor-
responding site or sites.) We define s1...N = − lnT1...N
for convenience, and we write the joint probability dis-
tribution of s and φr′ for the region as P1...N (s, φr′) ≡
〈δ(s − s1...N )δ(φr′ − φr′1...N )〉1...N , where angle brackets
indicate disorder averaging over the site or sites listed
in the subscript. Our task is to determine properties of
P1...N (s, φr′), including the localization length (which is
a property of the marginal distribution of s), given the
disorder distribution of the parameters of the local S ma-
trix (1).

A basic assumption of our calculation is that localiza-
tion occurs: that is, for large N the region reflection
coefficient R1...N ≈ 1 in all disorder realizations [27].
The well-known exact recursion relations that determine
s1...N+1 and φr′1...N+1

from s1...N , φr′1...N , rN+1, and r′N+1

then simplify for large N to

s1...N+1 = s1...N + gN+1(φr′1...N ), (2a)

φr′1...N+1
= φr′1...N + hN+1(φr′1...N ) (mod 2π), (2b)

where gn(φ) = − lnTn + ln
(
1− rneiφ − r∗ne−iφ +Rn

)
,

hn(φ) = π− i ln
(

1−r∗ne
−iφ

1−rneiφ
rnr
′
n

Rn

)
, Rn = |rn|2 = |r′n|2, and

Tn = 1 − Rn. Eqs. (2a)-(2b) are the starting point for
our analytical work, though we use the exact recursion
relations in our numerical checks.

Our scattering expansion consists of rescaling rn →
λrn and r′n → λr′n [28] in Eq. (1) (with tn and t′n also
rescaled to maintain unitarity), then expanding in the
parameter λ while simultaneously sending N → ∞ in a
λ-dependent way such that the system is always in the
localized regime. In particular, we suppose that for any
fixed λ > 0 there is some N0(λ) for which R1...N ≈ 1 for
any N ≥ N0(λ) in all disorder realizations [29], and we
always work in the regime λ > 0 and N ≥ N0(λ). Below,
we suppress λ and refer informally to an expansion in
|rn|.
Scattering expansion of the localization length.—We

start by expressing the localization length in terms of the
limiting form p1...∞(φr′) ≡ limN→∞

∫∞
0
ds P1...N (s, φr′)

of the marginal distribution of the reflection phase.
From Eq. (2a), we see that for sufficiently large N ,
〈s1...N 〉1...N increases by the same constant amount
(which by definition is 2/Lloc [30]) each time N is
increased by one: 〈s1...N+1〉1...N+1 − 〈s1...N 〉1...N =∫ π
−π dφ p1...∞(φ)〈gN+1(φ)〉N+1 = 2/Lloc [31]. There is in

fact no dependence on N + 1 seeing as the (i.i.d.) disor-
der average can be done over any site n [32]. Converting
to Fourier space yields a series expression for the inverse
localization length in terms of the Fourier components
p1...∞,` ≡

∫ π
−π

dφr′
2π e−i`φr′p1...∞(φr′) and the moments of

rn [25]:

2

Lloc
= 〈− lnTn〉n − 4πRe

[ ∞∑
`=1

1

`
p1...∞,−`〈r`n〉n

]
. (3)

Eq. (3) recovers the uniform phase formula 2/Lloc =
〈− lnTn〉n [18] in two non-exclusive special cases: (i)
the local reflection phase is uniformly distributed in-
dependently of the local reflection coefficient (for then
〈r`n〉n = 0 for ` > 0), or (ii) the reflection phase distribu-
tion of the region is uniform. The difficulty of applying
Eq. (3), in the case that (i) does not hold, is that it has
been shown in many examples that the reflection phase
distribution can be non-uniform, and in general the dis-
tribution is only known numerically (although Schrader
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et al. [21] calculated p1...∞,`=−1 in an equivalent form)
[33].

The key advance that we make is to apply the scatter-
ing expansion to p1...∞(φr′), showing that it may written
as a recursively-defined series involving only local aver-
ages. Furthermore, we show that p1...∞,` = O(|rn||`|),
which implies that only finitely many terms in the sum
in Eq. (3) are needed to obtain the scattering expan-
sion of the inverse localization length to any fixed order.
These results rely on the disorder distribution being “rea-
sonable” and the particular model parameters chosen be-
ing “generic;” our precise assumptions are that localiza-

tion occurs and that the inequality
〈

(−rnr′n/Rn)
`
〉
n
6= 1

holds for all integers ` 6= 0 [34].

We focus here on the results of this calculation; de-
tails will be presented elsewhere [25]. It is convenient
to define vn = rnr

′
n/Rn, α` = 1/[1 − 〈(−vn)`〉n], and

several constants determined by local averages (we use
a superscript to indicate the order of a given constant
in the scattering expansion): γ(1) = α1〈r′n〉n, γ(2) =

α2〈r′n(r′n − 2γ(1)vn)〉n, γ
(3)
1 = α1〈rn(γ(1)r′n − γ(2)vn)〉n,

and γ
(3)
3 = α3〈r′n(r′n

2 − 3γ(1)r′nvn + 3γ(2)v2n)〉n. Then

we have 2πp1...∞(φr′) = 1 + 2Re[(γ(1) + γ
(3)
1 )e−iφr′ +

γ(2)e−2iφr′ + γ
(3)
3 e−3iφr′ ] +O(|rn|4) and our main result

for the localization length:

2

Lloc
= 〈Rn〉n − 2Re

[
〈rn〉n〈r′n〉n

1 + 〈rnr′n/Rn〉n

]
+

1

2
〈R2

n〉n − 2Re

[
α2
1〈rn〉n〈r′n〉n (〈rnr′n〉n + 2α2〈rnvn〉n〈r′nvn〉n)

+ α2

(
1

2
〈r2n〉n〈r′2n 〉n − α1〈rn〉〈r′2n 〉n〈rnvn〉n − α1〈r′n〉n〈r2n〉n〈r′nvn〉n

)]
+O(|rn|6). (4)

The first two terms in Eq. (4) are the leading order
contribution (second order in |rn|) and were found in an
equivalent form by Schrader et al. in [21]. The remain-
ing terms are fourth order, and indeed all odd orders
vanish by symmetry [25]. The terms whose real parts
are taken are the contributions from the non-uniformity
of the reflection phase distribution. We emphasize that
these non-uniform phase contributions are parametrically
of the same order as the uniform phase contributions
(〈− lnTn〉n = 〈Rn〉n+ 1

2 〈R
2
n〉n+ . . . ); in particular, devi-

ations from phase uniformity generally affect the inverse
localization length even at leading order [21, 35, 36].

Application to quantum walks.—We next apply the
general result (4) to a single-step, two-component
DTQW in one dimension [10]. The setup is an in-
finite chain with site index n and an internal “spin”
degree of freedom (↑ or ↓). The unitary opera-
tor Û that implements a single time step is Û =∑
n (|n+ 1, ↑〉 〈n, ↑|+ |n− 1, ↓〉 〈n, ↓|) Ûcoin, where the

“coin” operator is Ûcoin =
∑
n |n〉 〈n|⊗Ucoin,n and Ucoin,n

is a general 2-by-2 unitary matrix (acting on the spin de-
gree of freedom at site n) parametrized as [10]

Ucoin,n = eiϕn
(

eiϕ1,n cos θn eiϕ2,n sin θn
−e−iϕ2,n sin θn e−iϕ1,n cos θn

)
. (5)

We take the parameters Dn ≡ (θn, ϕn, ϕ1,n, ϕ2,n) to be
i.i.d. across the sites n = 1, . . . , N (note that the compo-
nents of Dn may be correlated with each other), defining
a disordered region.

The S matrix of the region describes solutions of
the stationary state equation Û |Ψ〉 = e−iω |Ψ〉 (with
quasienergy ω). There are in fact many possible scat-

tering problems, corresponding to different choices for
site-independent values to be assigned to Dn in the non-
disordered regions (the sites n < 1 and n > N). It may
be shown that all choices result in a problem of the form
we have been considering (i.e., there is some S matrix Sn
that depends only on Dn and ω) and that the probability
distribution of the transmission coefficient in the local-
ized regime is the same in all cases [25]. We consider the
simplest case of setting Dn = 0 in the non-disordered
regions, which results in Sn = eiωUcoin,n. Comparing to
Eq. (5), we see that the local reflection amplitudes are
rn = −ei(ω+ϕn−ϕ2,n) sin θn and r′n = ei(ω+ϕn+ϕ2,n) sin θn.
Then Eq. (4) yields the inverse localization length for
small sin θn, up to an error of order |rn|6 = sin6 θn, with
arbitrary phase disorder. In particular, the joint distri-
bution of Dn is arbitrary as long as sin θn is small.

Specializing to the case of ϕn uniformly distributed in
[−W,W ], with ϕ1,n = ϕ2,n = 0 and θn ≡ θ, we obtain
the inverse localization length for small sin θ and arbi-
trary phase disorder strength W . We have verified that
our result agrees with the calculation of Vakulchyk et
al. [10], in which θ is arbitrary and W is either small
(yielding 2/Lloc ∼ W 2) or equal to π (in which case the
uniform phase formula holds). Our result thus interpo-
lates between the known limits of weak and strong phase
disorder and analytically demonstrates non-monotonicity
in disorder strength [37]. We have verified our result with
numerics in the regime of small sin θ [25]; furthermore,
in Fig. 2 we show that the agreement with numerics is
favorable even if sin θ is not particularly small.

Joint probability distribution.—Returning to the gen-
eral case, we now summarize the results of applying the
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numerics (points) for a moderately biased coin (main plot)
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scattering expansion to the joint probability distribution
P1...N (s, φr′) [25]. We find that for large N this distribu-
tion takes a Gaussian form defined as follows. There is a
constant c and two functions ŝ(φr′), η(φr′) for which we
have

P1...N (s, φr′) = p1...∞(φr′)

× 1√
2πσ(N,φr′)2

e
− 1

2 [s−
2N
Lloc
−ŝ(φr′ )]

2/σ(N,φr′ )
2

, (6)

where the phase-dependent variance σ(N,φr′)
2 scales lin-

early with N with a sub-leading, phase-dependent cor-
rection: σ(N,φr′)

2 = 2[cN + η(φr′)]. The constant c
is related to the variance σ(N)2 of the marginal distri-
bution of s by σ(N)2 = 2cN + O(N0). We can calcu-
late the quantities c, ŝ(φr′), and η(φr′) order-by-order in
the scattering expansion in terms of local averages [ex-
cept that the functions ŝ(φr′) and η(φr′) each have an
undetermined, φr′-independent additive constant], and
in particular we have obtained c = 2/Lloc + O(|rn|4)
(i.e., SPS to one more order than shown in [21]), ŝ(φ) =
2Re{γ(1)e−iφ+[ 32γ

(2)−(γ(1))2]e−2iφ}+O(|rn|3)+const.,

and η(φ) = Re{[γ(2) − (γ(1))2]e−2iφ]}+O(|rn|3) + const.
We now explain briefly how we arrive at Eq. (6). From

Eqs. (2a)-(2b), it is straightforward to show that the
joint probability distribution satisfies a recursion relation
of the form P1...N+1(s, φr′) = F [s, φr′ ; {P1...N}], where
F is a linear functional in its last argument. We take
Eq. (6) as an ansatz and require F [s, φr′ ; {P1...N}] =
P1...N+1(s, φr′) +O(1/N2) for large N ; this requirement
fixes c, ŝ(φr′), and η(φr′) to all orders in the scattering
expansion [except for the constant offsets of ŝ(φr′) and
η(φr′)]. Since the ansatz itself is O(1/

√
N), we can ex-

pect that (6) is the leading term in an expansion in 1/
√
N

of the exact answer.
The correlation between s and φr′ in (6) is a finite size

effect, as we now explain. We write the average of s as
〈s〉 = 2N/Lloc+O(N0), and we consider how accurate 〈s〉

is as an estimate of the conditional average of s with fixed
φr′ in (6). The phase-dependent variation of the mean
introduces a relative error of order ŝ(φr′)/〈s〉 ∼ 1/N ,
while the finite variance introduces a relative error of or-
der σ(N,φr′)/〈s〉 = cLloc/

√
N + O(N−3/2), where the

N−3/2 term contains the contribution of the function
η(φr′). Prior work has found the joint probability dis-
tribution to factorize into a transmission coefficient part
times a phase part [38, 39], in apparent contradiction to
our Eq. (6); this suggests that the prior work only ac-
counted for the 1/

√
N term in the above discussion and

neglected the 1/N and N−3/2 terms that contain the cor-
relations between s and φr′ .

We next show that the scaling theory applies to the
joint distribution in the regime of weak local reflection
strength. Here we ignore η(φr′) (whose effect is sublead-
ing for large N , as we have shown above) and expand the
remaining terms of (6) to leading order in the scattering
expansion. A single parameter then determines 2/Lloc

and c, seeing as 2/Lloc = c at leading order [21]. Fur-
thermore, the phase distribution up to first order is de-
termined entirely by two parameters: the real and imag-
inary parts of γ(1), or by a simple change of variables,
the mean and variance of φr′ . The key relation that im-
plies that these three parameters suffice to determine the
joint distribution is that the first order part of the phase-
dependent mean turns out to be essentially same function
as the first order part of the phase distribution:

ŝ(φr′) = 2πp1...∞(φr′) +O(|rn|2) + const., (7)

where the constant on the right-hand side is independent
of φr′ .

Conclusion.—In a general problem of single channel
scattering through an i.i.d. disordered chain, we de-
veloped a systematic expansion in the local reflection
strength, which we call the scattering expansion. We
calculated the inverse localization length to the first two
non-vanishing orders in this expansion, using an explicit
expansion of the (generally non-uniform) reflection phase
distribution. We applied our result to calculate the lo-
calization length in a two-component DTQW with a bi-
ased coin parameter and arbitrary phase disorder, and
we thus showed analytically that the localization length
can depend non-monotonically on the strength of phase
disorder.

Returning to the general problem, we summarized the
results of applying the scattering expansion to the joint
probability distribution of the log-transmission and re-
flection phase: first, we found the general form of the
joint distribution to all orders in the scattering expan-
sion, and second, we showed that when the local reflec-
tion strength is weak, the joint distribution is determined
by three parameters.

Our methods might extend to the quasi-one-
dimensional case (i.e., multi-channel S matrices).
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